Austenite formation during intercritical annealing

نویسنده

  • J. Lis
چکیده

Purpose: of this paper is the effect of the soft annealing of initial microstructure of the 6Mn16 steel on the kinetics of the austenite formation during next intercritical annealing. Design/methodology/approach: Analytical TEM point analysis with EDAX system attached to Philips CM20 was used to evaluate the concentration of Mn, Ni and Cr in the microstructure constituents of the multiphase steel and mainly BainiteMartensite islands. Findings: The increase in soft annealing time from 1-60 hours at 625°C increases Mn partitioning between ferrite and cementite and new formed austenite and decreases the rate of the austenite formation during next intercritical annealing in the (α+γ) temperature range at 700 and 750°C. The general equations for carbide dissolution and austenite formation in intercritical temperature range were established. Research limitations/implications: The final multiphase microstructure can be optimised by changing the time / temperature parameters of the intercritical heating in the (α+γ) temperature range. Originality/value: The knowledge of partitioning of alloying elements mainly Mn during soft annealing and intercritical heating is very important to optimise the processing technology of intercritical annealing for a given amount of the austenite.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of NbMo Addition on the Precipitation Behaviour of V Microalloyed Steel during Intercritical Annealing

This paper reports on the precipitation behaviour and microstructural evolution in ~20% cold rolled NbMoV and V single microalloyed low carbon steels during intercritical annealing. The microstructure and precipitation behaviour were studied by optical and scanning/transmission electron microscopy and microanalysis, X-ray diffraction technique and Vickers hardness testing. After intercritical a...

متن کامل

Modelling of Kinetics and Dilatometric Behavior of Non-isothermal Pearlite-to-austenite Transformation in an Eutectoid Steel

Austenitization is an inevitable occurrence during the heat treatment of steels. Despite this consideration, less attention has been paid so far to the study of the formation of austenite as compared with the vast amount of research on its decomposition. That is because the steel properties depend basically on the transformation processes following austenitization. However, the initial austenit...

متن کامل

Ultra-Fine Grained Dual-Phase Steels

This paper provides an overview on obtaining low-carbon ultra-fine grained dual-phase steels through rapid intercritical annealing of cold-rolled sheet as improved materials for automotive applications. A laboratory processing route was designed that involves cold-rolling of a tempered martensite structure followed by a second tempering step to produce a fine grained aggregate of ferrite and ca...

متن کامل

Development of Ultrafine Lamellar Ferrite and Austenite Duplex Structure in 0.2C5Mn Steel during ART-annealing

The microstructural evolution of Fe–0.2C–5Mn steel during intercritical annealing with holding time for up to 144 hours was examined by TEM and STEM. It was demonstrated by TEM that the martensite lath structure gradually transformed into a lamellar ferrite and austenite duplex structure. The partitioning of manganese from ferrite to austenite was found by STEM. Typical Kurdjumov-Sachs orientat...

متن کامل

Experimental Characterisation of the Bainitic Transformation Kinetics of Residual Austenite in Mn-Si TRIP-Assisted Multiphase Steels

Recent studies on TRIP-assisted multiphase steels have emphasised the drastic importance of the bainitic transformation in the optimisation of properties. Bainitic ageing is necessary for the stabilisation of austenite with respect to the martensitic transformation. This metastable retained austenite can still transform to martensite when plastically deformed (TRIP effect). The present work dea...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008